Data Assimilation for Numerical Weather Prediction

[NWP] Project: LETKF, Efficient DA Filtering

Diego Calderon, Maria Cesarini, Chris DeFiglia, Shuchi Goyal, Danielle Sykes, Qi Zhan, Mingjun Zhou, and Ahmed Attia

> University of Arkansas Colgate University UNC Chapel Hill University of Georgia UM Baltimore County St. John's College University of Arizona SAMSI/NCSU

SAMSI/NCSU UG-Workshop

November 2, 2017

[NWP] Project: LETKF, Efficient DA Filtering [1/19] November 2, 2017: {DA 4 NWP} SAMSI/NCSU UG-Workshop, Ahmed Attia. (http://samsi.info)

Outline:

Motivation: Forecasting, DA, and Filtering

Filtering

EnKF, and LETKF

Process

Numerical Results: LETKF with a QG model Accuracy: RMSE Efficiency: CPU-Time

Conclusion

Further Implications

Acknowledgements

Motivation: Forecasting, Data Assimilation, and Filtering

What is Data Assimilation (DA)?

- It is a fusion of information collected from different sources, including model forecasts and observations in order to obtain a more accurate prediction
- Example: ETA prediction on a GPS

Using DA to forecast weather:

Combined with a forward forecasting model, DA can be used to predict the state of the atmosphere in the future, e.g. for the following day.

 $Model + Prior + Observations \rightarrow \textbf{Best description of the state}$

with associated uncertainties

e.g.Filtering

 Applications include: Object tracking (e.g. ETA for GPS tracking), atmospheric forecasting, power flow, oil reservoir, volcano simulation, etc.

[NWP] Project: LETKF, Efficient DA Filtering Motivation: Forecasting, DA, and Filtering [4/19] November 2, 2017: {DA 4 NWP} SAMSI/NCSU UG-Workshop, Ahmed Attia. (http://samsi.info)

Filtering:

- Filtering refers to the process of assimilating a single observation (vector) at a time.
- ► A filtering step is carried out by applying a prediction/correction procedure.
- ► The prediction is carried out by forwarding propagation of model dynamics.
- The correction step updates the forecasted state along with the associated uncertainty given the observation.
- ► The filtering process is applied sequentially in operational settings.

The most popular/operational filter for DA applications is EnKF; EnKF/DEnKF is an ensemble-based approximation of Kalman Filter.

[NWP] Project: LETKF, Efficient DA Filtering Motivation: Forecasting, DA, and Filtering [5/19] November 2, 2017: {DA 4 NWP} SAMSI/NCSU UG-Workshop, Ahmed Attia. (http://samsi.info)

Project Goal

Using DATeS:

- ► Implement two flavors of LETKF filtering algorithm; local, and global LETKF,
- Test and analyze the accuracy and efficiency of localized LETKF filter ¹ against global LETKF ² and DEnKF Implementation ³.

¹Harlim, John, and Brian R. Hunt. *"Local Ensemble Transform Kalman Filter: An Efficient Scheme for Assimilating Atmospheric Data."* preprint (2005).

²Attia, Ahmed, and Adrian Sandu. "DATeS: A Highly-Extensible Data Assimilation Testing Suite." arXiv preprint arXiv:1704.05594 (2017).

LETKF Filter

What is LETKF?

- EnKF stands for Ensemble Kalman Filter
- EnKF:
 - 1. takes a forecast ensemble (that approximates prior distribution) and an observation $% \left({{{\left({{{{\bf{n}}} \right)}}}_{\rm{cl}}}_{\rm{cl}}} \right)$
 - $2. \$ uses the forecasted ensemble, along with the observation, to calculate a posterior ensemble
 - 3. the posterior (corrected) ensemble approximates the actual distribution
- ► LETKF encompasses the uncertainty of each estimate based on its local region

Filtering Cycles: Forecast & Assimilation/Analysis

[NWP] Project: LETKF, Efficient DA Filtering Motivation: Forecasting, DA, and Filtering [8/19] November 2, 2017: {DA 4 NWP} SAMSI/NCSU UG-Workshop, Ahmed Attia. (http://samsi.info)

Localization in LETKF

Global versus Local LETKF:

- ► The original/Global formulation of the filter results in spurious correlations,
- > It is inefficient to assimilate observations from the whole domain
- Local models only use information close to a certain point to make predictions about that point at a future state

Localization in LETKF (cont'd):

Figure: A visualization of localized LETKF

[NWP] Project: LETKF, Efficient DA Filtering Motivation: Forecasting, DA, and Filtering [10/19] November 2, 2017: {DA 4 NWP} SAMSI/NCSU UG-Workshop, Ahmed Attia. (http://samsi.info)

Project Goal

Using DATeS, implement, test and analyze the accuracy and efficiency of localized LETKF filter against global LETKF and DEnKF

Analysis Step

Algorithm 1 LETKF Analysis Algorithm: Global

- procedure LETKF_GLOBAL Input: A forecast ensemble (X), and an observation y^o Output: An ensemble of states from the posterior distribution X^a
 Apply H to each column of X to get Y. Average its columns to get the vector y
 [¯]^b ∈ ℝ^o and subtract y
 [¯]^b from each column of Y to get Y^b ∈ ℝ^{o×k}
- 3: Average the columns of X to get $\bar{x}^b \in \mathbb{R}^s$, and subtract it from X to get $X^b \in \mathbb{R}^{s \times k}$
- 4: Compute $\mathbf{C} = (\mathbf{Y}^b)^T \cdot \mathbf{R}^{-1}$, $\mathbf{C} \in \mathbb{R}^{k \times o}$
- 5: Compute $\tilde{\mathbf{P}}^a = [(k-1) \cdot \mathbf{I} + \mathbf{C}\mathbf{Y}^b]^{-1}$, $\mathbf{I} \in \mathbb{R}^{k \times k}$
- 6: Compute $\mathbf{W}^a = [(k-1)\tilde{\mathbf{P}}^a]^{\frac{1}{2}}, \, \mathbf{W}^a \in \mathbb{R}^{k \times k}$
- 7: Compute $\mathbf{w}^a = \mathbf{\tilde{P}}^a \mathbf{C} (\mathbf{y}^o \mathbf{\bar{y}}^b)$, $\mathbf{w}^a \in \mathbb{R}^k$ and add it to each column of \mathbf{W}^a to get $\mathbf{W} \in \mathbb{R}^{k \times k}$
- 8: Compute $\mathbf{X}^{b}\mathbf{W}$ and add $\mathbf{\bar{x}}^{b}$ to each column
- 9: end procedure

Analysis Step

Algorithm 2 LETKF Analysis Algorithm: Local

- procedure LETKF_LOCAL Input: A forecast ensemble (X), and an observation y° Output: An ensemble of states from the posterior distribution X^a
 Repeat steps 2, and 3 in Algorithm 1
 for <each model grid-point> do
 Truncate x^b, and X^b to include only the model variables at that grid point.
 Truncate y°, y^b, and Y^b to include only the observations within radius r around that grid point.
- 6: Repeat steps 4 7 from Algorithm 1 given the truncated matrices
- 7: Use the calculated update, to calculate the analysis at the current gridpoint
- 8: end for
- 9: end procedure

DEnKF Filter Accuracy: RMSE

Figure: Root Mean Square Error for DEnKF (Benchmark). The Error is calculated as the difference between the analysis state (ensemble-mean), and the true/reference solution.

Filters' Accuracy: RMSE

Figure: Root Mean Square Error for DEnKF and LETKF. The Error is calculated as the difference between the analysis state (ensemble-mean), and the true/reference solution.

CPU-Time Comparison

[NWP] Project: LETKF, Efficient DA Filtering Numerical Results: LETKF with a QG model [16/19] November 2, 2017: {DA 4 NWP} SAMSI/NCSU UG-Workshop, Ahmed Attia. (http://samsi.info) NC STATE UNIVERSITY

Conclusion

► We have gained professional experience about:

- 1. Gridded models, prediction, inverse problems, and data assimilation,
- 2. Advanced Python skills (e.g. Numpy, Scipy, Matplotlib, Python inheritance & classes, etc.),
- 3. DATeS package for data assimilation
- ► We were able to implement two flavors of the LETKF filter:
 - 1. Global LETKF,
 - 2. Local LETKF.
- ► We have also demonstrated the benefits of localization versus globalization, e.g. improved accuracy, and computational cost.

Further Implications

Given more time, we would:

- 1. Run/Test the code we implemented for larger model settings,
- 2. Run LETKF in parallel,
- 3. Study the effect of changing the localization radius (radius of influence) on the filter performance, e.g. RMSE.

Acknowledgements:

Thank you to the following people for their contributions to this project:

- ► SAMSI, and NCSU, and Coordinators of the SAMSI UG Workshop
- DATeS Team: http://people.cs.vt.edu/~attia/DATeS/About.html
- SAMSI Postdocs
- NWP-Project Team
 - * Diego Calderon;
 - * Maria Cesarini;
 - * Chris DeFiglia;
 - * Shuchi Goyal;
 - * Danielle Sykes;
 - * Qi Zhan;
 - * Mingjun Zhou;
 - * Ahmed Attia; SAMSI/NCSU Postdoc.

NC STATE UNIVERSI

[NWP] Project: LETKF, Efficient DA Filtering Acknowledgements [19/19] November 2, 2017: {DA 4 NWP} SAMSI/NCSU UG-Workshop, Ahmed Attia. (http://samsi.info)