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Motivation: Forecasting, Data Assimilation, and
Filtering

I What is Data Assimilation (DA)?
I It is a fusion of information collected from different sources, including model

forecasts and observations in order to obtain a more accurate prediction
I Example: ETA prediction on a GPS

I Using DA to forecast weather:
I Combined with a forward forecasting model, DA can be used to predict the

state of the atmosphere in the future, e.g. for the following day.
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I Assimilation:

Model + Prior + Observations︸ ︷︷ ︸
with associated uncertainties

→ Best description of the state︸ ︷︷ ︸
e.g.Filtering

I Applications include: Object tracking (e.g. ETA for GPS tracking),
atmospheric forecasting, power flow, oil reservoir, volcano simulation, etc.
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Filtering:

I Filtering refers to the process of assimilating a single observation (vector) at
a time.

I A filtering step is carried out by applying a prediction/correction procedure.
I The prediction is carried out by forwarding propagation of model dynamics.
I The correction step updates the forecasted state along with the associated

uncertainty given the observation.
I The filtering process is applied sequentially in operational settings.

The most popular/operational filter for DA applications is EnKF;
EnKF/DEnKF is an ensemble-based approximation of Kalman Filter.
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Project Goal

Using DATeS:
I Implement two flavors of LETKF filtering algorithm; local, and global LETKF,
I Test and analyze the accuracy and efficiency of localized LETKF filter 1

against global LETKF 2 and DEnKF Implementation 3.

1Harlim, John, and Brian R. Hunt. “Local Ensemble Transform Kalman Filter: An
Efficient Scheme for Assimilating Atmospheric Data.” preprint (2005).
2Attia, Ahmed, and Adrian Sandu. ”DATeS: A Highly-Extensible Data Assimilation
Testing Suite.” arXiv preprint arXiv:1704.05594 (2017).
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LETKF Filter

I What is LETKF?
I EnKF stands for Ensemble Kalman Filter
I EnKF:

1. takes a forecast ensemble (that approximates prior distribution) and an
observation

2. uses the forecasted ensemble, along with the observation, to calculate a
posterior ensemble

3. the posterior (corrected) ensemble approximates the actual distribution

I LETKF encompasses the uncertainty of each estimate based on its local region
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Filtering Cycles: Forecast & Assimilation/Analysis

(a) (b)
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Localization in LETKF

I Global versus Local LETKF:
I The original/Global formulation of the filter results in spurious correlations,
I It is inefficient to assimilate observations from the whole domain
I Local models only use information close to a certain point to make predictions

about that point at a future state
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Localization in LETKF (cont’d):

Figure: A visualization of localized LETKF
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Project Goal

Using DATeS, implement, test and analyze the accuracy
and efficiency of localized LETKF filter against global
LETKF and DEnKF

[NWP] Project: LETKF, Efficient DA Filtering Motivation: Forecasting, DA, and Filtering [11/19]
November 2, 2017: {DA 4 NWP} SAMSI/NCSU UG-Workshop, Ahmed Attia. (http://samsi.info)



Analysis Step

Algorithm 1 LETKF Analysis Algorithm: Global

1: procedure LETKF GLOBAL
Input: A forecast ensemble (X), and an observation yo

Output: An ensemble of states from the posterior distribution Xa

2: Apply H to each column of X to get Y. Average its columns to get the
vector ȳb ∈ Ro and subtract ȳb from each column of Y to get Yb ∈ Ro×k

3: Average the columns of X to get x̄b ∈ Rs , and subtract it from X to get
Xb ∈ Rs×k

4: Compute C = (Yb)T · R−1, C ∈ Rk×o

5: Compute P̃a = [(k − 1) · I + CYb]−1, I ∈ Rk×k

6: Compute Wa = [(k − 1)P̃a] 1
2 , Wa ∈ Rk×k

7: Compute wa = P̃aC(yo − ȳb), wa ∈ Rk and add it to each column of Wa

to get W ∈ Rk×k

8: Compute XbW and add x̄b to each column
9: end procedure
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Analysis Step
Algorithm 2 LETKF Analysis Algorithm: Local

1: procedure LETKF LOCAL
Input: A forecast ensemble (X), and an observation yo

Output: An ensemble of states from the posterior distribution Xa

2: Repeat steps 2, and 3 in Algorithm 1
3: for <each model grid-point> do
4: Truncate x̄b, and Xb to include only the model variables

at that grid point.
5: Truncate yo , ȳb, and Yb to include only

the observations within radius r around that grid point.
6: Repeat steps 4− 7 from Algorithm 1 given the truncated matrices
7: Use the calculated update, to calculate the analysis at the current grid-

point
8: end for
9: end procedure
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DEnKF Filter Accuracy: RMSE

Figure: Root Mean Square Error for DEnKF (Benchmark). The Error is calculated as the
difference between the analysis state (ensemble-mean), and the true/reference solution.
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Filters’ Accuracy: RMSE

(a) RMSE: DEnKF (b) RMSE: LETKF

Figure: Root Mean Square Error for DEnKF and LETKF. The Error is calculated as the
difference between the analysis state (ensemble-mean), and the true/reference solution.
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CPU-Time Comparison

[NWP] Project: LETKF, Efficient DA Filtering Numerical Results: LETKF with a QG model [16/19]
November 2, 2017: {DA 4 NWP} SAMSI/NCSU UG-Workshop, Ahmed Attia. (http://samsi.info)


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Conclusion

I We have gained professional experience about:
1. Gridded models, prediction, inverse problems, and data assimilation,

2. Advanced Python skills (e.g. Numpy, Scipy, Matplotlib, Python inheritance &
classes, etc.),

3. DATeS package for data assimilation

I We were able to implement two flavors of the LETKF filter:
1. Global LETKF,

2. Local LETKF.

I We have also demonstrated the benefits of localization versus
globalization, e.g. improved accuracy, and computational cost.
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Further Implications

Given more time, we would:

1. Run/Test the code we implemented for larger model settings,

2. Run LETKF in parallel,

3. Study the effect of changing the localization radius (radius of influence) on
the filter performance, e.g. RMSE.
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